-
射頻采樣ADC輸入保護:這不是魔法
任何高性能模數轉換器(ADC),尤其是射頻采樣ADC,輸入或前端的設計對于實現所需的系統級性能而言很關鍵。很多情況下,射頻采樣ADC可以對幾百MHz的信號帶寬進行數字量化。前端可以是有源(使用放大器)也可以是無源(使用變壓器或巴倫),具體取決于系統要求。無論哪種情況,都必須謹慎選擇元器件,...
2020-05-20
射頻采樣 ADC 輸入保護
-
【干貨】5GHz頻段的噪聲問題及降噪對策
近年來,以智能手機為代表的數碼設備開始配備無線局域網。部分地區引進了將5GHz頻段用于LTE通信的技術(LAA/LTE-U),數據通信實現高速化,預計5GHz頻段的無線通信將越來越普及。
2020-05-19
5GHz頻段 噪聲 無線通信
-
如何有效密封設備以防電磁干擾變得越發重要
隨著醫療器械迭代加速,電子系統日趨復雜。如何有效密封設備以防電磁干擾(EMI)變得越發重要。今天就讓我們一同從系統級別來考慮以設計合規設備的策略。
2020-05-19
密封設備 電磁干擾
-
高增益、大帶寬,為什么電路還會發生振蕩?
在之前“高增益、高帶寬,如何兩者兼得?”一文中,我們探討了如何在實現高增益和高帶寬的同時還能保持足夠高的信噪比 (SNR)。這篇文章里我們將更加詳細地討論實施方法和可能發生的問題。
2020-05-18
高增益 大帶寬 振蕩
-
高增益與高帶寬如何兼得?
由于我們必須采用多個功率級,因而同時實現高增益(1000 - V/V乃至更高)和高帶寬(數十 MHz)可能是一種挑戰。除了高增益、高帶寬方面的電路要求,還需要重點關注噪聲和穩定性問題。
2020-05-18
放大器 高增益 高帶寬 噪聲
-
干貨 | 量子雷達的概要
歷經 70 余年的發展,雷達技術在理論、體制、實現 方法及技術應用等方面都已取得了很大的進展。但近年來,傳統雷達探測性能已接近經典物理學極限,如何進一步提升雷達系統性能成為了困擾科技人員的難題。
2020-05-15
量子雷達 雷達 存儲器
-
如何減小共模輻射電磁干擾?
共模輻射是由于接地電路中存在電壓降(如下圖),某些部位具有高電位的共模電壓,當外接電纜與這些部位連接時,就會在共模電壓激勵下產生共模電流,成為輻射電場的天線。這多數是由于接地系統中存在電壓降所造成的。共模輻射通常決定了產品的輻射性能。
2020-05-14
共模輻射 電磁干擾
-
汽車級MEMS振蕩器或將帶來革命性突破
新技術取代成熟技術通常能夠帶來功能上的突破。在過去的50多年里,半導體行業一直都在追求更小的尺寸、更快的速度以及更便宜的價格(和/或更高的性能以及可靠性等)。而現如今,汽車應用中的數字電路則對時序要求非常高,相比過去對于微機電系統(MEMS)振蕩器呈現出極大的需求。本文將討論各類汽車...
2020-05-14
汽車級 MEMS振蕩器
-
射頻PA+FEM導雜散差的原因分析
射頻 PA+FEM 加上屏蔽罩的傳導雜散更差(DCS 的二三次諧波),不知是何原因,請賜教!
2020-05-13
射頻PA FEM 輻射
- 突破顯示局限!艾邁斯歐司朗光譜傳感技術讓屏幕自動適應環境
- 超越分辨率!解鎖移動測繪相機系統的關鍵密碼
- 下一代智能耳機:壓縮技術驅動AI功能融合創新
- 電力系統安全守護者:消弧線圈技術深度剖析與應用指南
- 安森美破解具身智能落地難題,全鏈路方案助推機器人產業化
- Spectrum推出多通道GHz數字化儀,最高支持12通道
- 安森美破解具身智能落地難題,全鏈路方案助推機器人產業化
- 避開繁瑣!運放差分電容測量簡化指南
- AMD 推出 EPYC? 嵌入式 4005 處理器,助力低時延邊緣應用
- 機電執行器需要智能集成驅動器解決方案以增強邊緣智能
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall